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In  t h i s  ar t ic le  we develop a numerical 1una;r theory which 

can be u$ed t o  obtain the rectanguLar coordinates for  a sa t e l l i t e  

v'moving in a highly inclined orbital plane. The arguments of the 

theory axe the linear functions of the true orbital  longitude of 

the satellite and of the sun and thus they are of Iaplacian type. 

We mahe use of Hansen's device t o  gerform the integration and for 

t h i s  purpose we introduce a f ic t i t ious sa t e l l i t e  whose true 

orbitsl  longitude i s  c0nsidered.w a constant till the integration 

is completed. The perturbations in the orbi ta l  plane are obtahed 

by meam of a W-function ana.logou6 t o  the W-function of' the 

!classical Baasen theory, and the perturbations of the orbital  

$Lane -Zed by the vector T 
a 

, the unit vector of the 

' f ic t i t ious sateUte relative to the &m orbital plane.. We 

show here thst the cornbimtion of ideas of Laplack; Hahsen and 

- ' f ic t i t ious sateUte relative to the &m orbital plane.. We 

show here thst the cornbimtion of ideas of Laplack; Hahsen and 

- 

* Hill, representsa converiiat way t o  obtain a nllrru?ricai h- 

theory, at the stme time this m i  -0 represents a ~rrccther. 

development and a sirqplification of the results given by the author 

in his previous article. 
I 
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NOTATIONS 

4 r - the position vector of the sa te l l i t e ,  

r 

r' - the psitian vector of the sun ~ 

-9 - the unit  vector of S, 
4 

U a - +  r 

u - the mean value of u , 
P i o  - the unit  vector of ?a, 

r3 r- the uni t  vector of the f ic t i t ious sa t e l l i t e  w i t h  resgect t o  

the system of coordinates associatedwith the mean orbi ta l  

plane. This plane is defined here as a plane having the r ea l  

inclination i but whose longitude of the ascending node is 

. vectur of the red sahCWte vith respect to  the 

i t a 3  plane. 
\ 

l/h - the ased  velocity of the satellite 

a0 - the mean v&ae of h 

e - ' the  osculating eccentricity of the satellite 

eo = the mean value of the eccentricity 

x - the true orbi ta l  longitude of the pericenter of the satellite 

(XI - the wan mue of x I 

+ - the periodic pxrt of x 

1-gl - the mean motion of x 0 .  



g2 - the m a  motion of the a x m n t  of t h e  latitude 

~3 - the man motion of the ascending node 

8 - t h e  longitude of the osculating ascending node 

*-- the distaace of the d-epaxture point from the ascending node 

f - the osculating inclination of the orbi ta l  plane of the 

sa teu l t e  taward the orbital  plane of the BUP 

N* - the periodic periodic part in -$ (Q  + C. ) 

X' - the periodic i n  +& (Q - c ) , 

v - the true orbital  longitude of the s a t e U t e  

v, - QlV - no - the mean true anomJy of the sa t e l l i t e  

. v2 = g, vtwo - the mean argument of t h e  latijxde of the sa t e l l i t e  

v3 = g3 V+QO - the mean longitude of the ascending node of the  

sa t e l l i t e  

I - the  pseudo-time ( the distrubed time) 
d- 

63-= 
w - t h e  tnae orbital  longitude of the f ic t i t ious sa t e l l i t e  

w1-= g l w  - *O - the m e a  true anomaly of the f ic t i t ious s a t e U t e  

w2 = g2 W + ~ O  -. the mean argument of the latitude of the 

- t - the perturbahions of t ine  
/ 

< 

fictitims SataLite * 

m' - t h e  mss of the sun.. The orbit of the sun is taken t o  be 

ellipbic. 

0 -,the disturbing function of the satellite. The mass of the 

p h t  and the gravZtational constant are chosen t o  be one, 

The mean of the  sate l l i te  is supposed t o  be zieglfgible. 

I 
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W -  

the disturbing function in which the el l ipt ic  

non-elliptic v2 a.re sepazated by replacing in 

vector 7 by t h e  vector f 
4 

-&e Hansen’s function deterrnFning 

orbital plane 

and the 

n the 

the perturbations in the 

. 

, 

-? * ,  
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On the N u m e r i c a l  Theory of S a t e U t e s  with H i g h l y  

Inclined Orbits 
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Introduction 

In  this ar t ic le  we develop a form of the differential  equations 

of the lunar theory w h i c h  can be used t o  obtain the ret- 
coordinates for  a sa te l l i t e  mving in a highly inclined orbi ta l  

p h e .  The integration of these equations is based on solving 

The author suggested th is  idea i n  89 ear l ier  work ( W e n  and al. \>dl ). 

The argutlents of the theory. are.the linear functions of the true 

orbi ta l  longitude of the sa te l l i t e  -V and the true orbi ta l  ' 

' 1ongitudGVof the sun and thus they are of Laplacian type. The 
! 
'first suggestion t o  u s e V  in  the theory sa te l l i t es  belongs t o  

Brown (1930). The use of the true orbi ta l  longitude speeds up 

the convergence of the development of the disturbing function, in 

com_r)srison t o  the development i n  terms of the mean anomalies. 

4 

, As i n  Hansen's theory, we sp l i t  the perturbations of the 

sa t e l l i t e  into the perturbations in the orbi ta l  plane and into 

the perturbations of the orbital  plane. 

We decided t o  make use of Ha.nseA's device to perform the 
I 
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integration and for this purpose we introduced a f ic t i t ious 

sa te l l i t e  whose true orbital  longitude w is considered as a 

temporary constant, till the integration is completed. After 

the completion of integration, we appu  the "bar operation", replacing 

w b y  V , the true orbital  longitude of the rea l  satel l i te ,  

It is  of interest  to note that the W-function determining the 

perturbations in the orbi t  plane is simpler in the t h e 0 4  of 

LapLacian type than in the classical Hansen's theory, 

Thus the combination of ideas of La?lace, Hansen and H i l l  

represents a convenient way to obtain a numerical t h e 0 4  of the 

sa t e l l i t e  

The exposition given here represents also a f 'urther develop- 

: ment and a simplification of the results given by the author in 
i 

+ his  previous a r t ic le  ( \ 9 6 \ ). In the classical Hansen t h e 0 4  
- 

pie is m;de of three auxiliary pa;rameters. 

', 
/- 

/ 
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where is a purely periodic part'in - *+ OIOand K'  
is a purely periodic Psrt in + ~ e - r s ) f ~ .  

the symmetry the author ( 9 5 9 )  has suggested the use of four 

parameters 

For the  sake of 

A 

The implicit role  of Hansen's, as well as the author's parameters 

is only an auxiliary one. 

of the unit vector of the satellite with respect t o  the mean orbit  

They.only help t o  form the components I 

, 
I 

' plane. 

determination of the un i t  vector directly. 

For this reason we discarded their  use and resor+,ed to  the 

The different ia l  equation governing the perturbations of the 

u n i t  vector is simple enough to justify this mdification and 

the' total  nurriber of the differential  equations i s  reduced for  one. 

The pethod given here i s  equally applfcable t o  the planetary satellites 

disturbed by the sun or  t o  the lunar orbiter disturbed by the Earth, 

I 

. 

, / 

I 
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as w e l l  as to the artificial satellites of the Earth whose 

motion is disturbed by the presence of the zonal and the tesseral 

harmonics. 

or moderate aSa the last case does not include the case of the 

critical inclination. 

In the first two cases, the eccentricity must be small 

Basic Dizferential Equations 

We refer the notion of the satellite to a mving iiieal system 

of coordinates w i t h  the ac m d  2 
orbit plane. 

laKing standard form: 

axes lying in the osculating 

The equations of motion can be written in the fol- 

/- 

I 
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Putting 

I 

I can write 
_- 

\ 

\ 

rt 
u--, - 

can be decomposed into t h e  

. .  

c o s  (v- X )  

secular part 

(3) 

(4) 
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and into a purely periodic part 4, . ~ h u s  

, 

' where we put 

The mean value of u, can be defined as 



. -  I 

- ? -  

where e ,  is  the constant of the eccentricity and yko is the 

constant of the "area-integral". Both eleEnts,  Q, and a, , 
together with other eleroents, mt be chosen i n  such a way that no 

seculas or mixed terms appear in the developant of' the coordinates 

i n t o  trigonometric series. 
I 
I In order t o  set Hansen integration procedure it is convenient . 
t 
: 
L i n  the-Laplsce-Hansen type of 1- theory t o  define the basic ! 

, W-function by means of the equation: 

where w 1  i s  considered as a terzporary constant. 

- Hansen "bar-operation" consists in our case i n  the re2lacement 

of w 1  by V, after the integration i s  corcpleted. I n  forning 

the differential  equation for W, as well as i n  the process of 
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integration, w l  i s  invariable. 

different from the classical one, but it leads t o  a simpler dif- 

ferent ia l  equation for i t s  determination. 

bar-operator t o  (u) gives: 

m~ form of the W-function is 

The application of the 

Introducing the ?stretching factor" 1 + * by n e w  of the equation 

' 1  . The practical way of computing v by means of Ltexa-Uon is based 

on the use of formula: 
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Making use of the equation ( B r m ,  \ 89 6 ) 

and putting _- 

we ''obtain 
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Cocibining the equation (15) with the staadaxd equations 

together, we deduce: 

.sa +%* - 

Taking (12) into account, we 05tain*. 
\ 

%* 
t 
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El jmi t ing  sin ( + -M, 

relation 

from t h e  last equation by mans ~f t h e  

and tak ing  

9, u .  

’ i n t o  consideration, we have 
-- -. 

where we put 

, 
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The motion of the pericenter 1 - gl i s  obtained from the condition 

that  no term of the form A W, ap2ears i n  the equation (19). 
t 

If the eccentricity eo i s  not very small, say, of "the order , 

0.01-0.3, approximately, then the numerical values of all the elements 

' cas be su'bstitxted Afrom the outset. 

i n  or&er t o  avoid the numsrical difficulty in the determination 

of the motion of the pr igee,  it is recorrroended t o  keep tfie 

f irst  power of the eccentricity in the l i t e r a l  form. 

words, every trigonometrical series T must be written in the form 

I n  other . 

where is. independent from eo and bo"& series, and Ax, 
t 



are the trigonoaetric series 

W e  write the product of two such series i n  the form 

p r e l y  numerical coefficients. 

+ e ,  AB,) 
ana, again, the nmerical value of eo is subscituteed i~ the 

pasentkeses. Such a s i q l e  device serves 8s a seeguard against 

the "smU divisor" in the deteminatioa of the aotion 02 the 

pericenter from equation (19). The unit vector can written 

ia the form 

-2- 0 

I 

t 

'. 

where 

. 



and 

. we s e t  

- 11;- - 

where v2 and v3 axe t h e  l inear arguments w i t h  respect t o  v, 
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and st' ana K' are purely periodic. m e  argmient v2 represents 

the mean argiment of tne latitcde azd v3 represents the mean 

longitude of the ascending node. 

of one a d  g3 is of the order of per-iurbations. 

Tie coefficient g2 is of order 

Using the auxi l iary pzraEeters 

--3 Q 

the unit vector k c221 be repesented as (Nusen, \9 6\ ): 

where tbe aa.trixA carries a l l  the periodic effects i n  

me elements A;* k of the mtrix A are simple p o b o n i a b  i n  
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The auL&or has established (Xusen, \ 9 6'5 ) the followiag se t  of 

i 
(23) 

i 

the differential  eGuations for the variations of the - passmeters: 
_- 

I 

! 
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-. 

I 
"b 2% 

= z -  

+ -a[+( 4 A, + 1: ) i /  

- ( A 
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i 

- .  
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. a  , . * s  

. ,  

I 
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i . '. 

- _  

\ .  

==% 

-. 

, 
. .  

I '  

(37) 



" -  I: - 

- 20 - 

The s i q l i c i t y  of eQuations ( 3 0 ) - ( 3 5 ) ,  as veil as e q z k i o n  (21), 

show tbt we c a  d i sca rd  t'ae use of - parawters a d  t o  intro- 

duce the mit vector 

I. 

L.. 
1 .  (39) 

(41) 
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instead. 

differential equation f o r  'i' a d  C u i z g  the integration. After 

We shall consfaer w2 c o x t m t  during t he  I'o,mation 02 the 
-> 

the integration i s  completed, we apply "&e b.zr-o2eration t o  

end replace w2 with v2. .The vector 
5- 

is tkie unit vector of 

* e  sa te l l i t e  relative t o  the =an o r b i t a l  p h e .  



. .' - , 

- 

-- 

a perforrdng itera-iion we have t o  distinguish betweer: v2 

is the developnent of perturbations and t h e  t l e l J i ~ t i c t '  v2 i n  tne 

vector P . 5 

' 

The derivativzs of %he iiisturbiag A?unction are fomed w i t h  

(41' 

respect t o  the "elliptic".v2. .Tor t L i s  remon it is  coavmient t o  



.. _.__ 
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i 
1 -  

- 23 - 

The distur5- Ifunction so nodified w i i i  be  desigsated by - 
\ \  . T a k b g  (39)-(41) l l i t o  account, we 05tai.n 

, 



. .  . 

' I  

or, in the vectorial form: - 

t 
I 
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using the fornazla 

for  the lunar case xe obtain, taking (k) into account: 

' ~ h u s , i n  performing the transition from CL t o T  we nnrst 

substitute the following expression for  cos H: 

i 

I 

? 
k 

t . 
\ 
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we obtsin: 

'. 

t 



where 
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h i s  the aaalogue of the parameter + of Debamay's theory 

and 4: is the pasalLactic factor of our theory. A s  in (43)-(45) 

equation (19) becomes: 

Equations (43)-(45) and (19') ca.n be simplified i n  the case 

of the &if ic ia l  satellite, povi-  only zonal harmonics are 

considered. We have 



8 .  . .  

\ 
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We start iteration wiiih 

and repeat it till we reach the final, values, The perturbed 

coordinates are the trigonometric series fn four argauwats: 

In the classical Laplacfen theory the angle v4 is eliminated in 

favor of the angle m-c4, w'here ~4 is a constant. 

this elimination, as well as t h e  substitution of trigonometric 

We can avoid 

: series into the argunmdx, if we base the solution on integration 
i 

of a partial differential equation instead 

quadratures. 
I 
i 

'. we have:' 

of pezfoming the 

or '. 

. "- 



I 

where we put: 

: and i s  a purely periodic series. 

Thus, *e reduce the problem t o  integration of the partial 

differential equations : 

(49) 

I 

! 
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and the right sides of these equations must not con- constant terms. 

From (49) it can be seen easily that 

and it is a small quantity. The tenns 

t 

i 

cal ly  are a, least of ,he four& order 3 A . ConsequenJy, 

. by ire- of iteration represents a fast convergent process. 

I *.-' 

I 
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Some simplifications are possible in the case of an artif ic ial  

satell ite.  If we include the effects of the tesseral harmonics, 

then the argument v4 i s  the sidereal time op the zero-meridian. 

Designating the angula;r velocity of rotation of the Bacth by n', we 

hasre 

Let ~4 be the constant paxt in the right side of the last equation 

asd put: 

! 

We have: 
8 

! , 

because the arguments v3 and v4 appear in the form of the difference 

I 
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v3 - V 4 r  

Evidently . 

If we consider the case of geodetic satellites w i t h  smal l  ec- 

centricities, then the quantity h 8 e , / ~ 3  is small enough 

to justify the use of iteration. 

w i t h  

0 

For e-le, for  the satellite 

the factor h' ~ o i 4 . 3  is of the order 
0 

~ If only the zonal harmonics are considered, then -- --- - 
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For the t i m e  being the author& preference is 

Taking into account the speed numerical theories. 

w i t h  which modern machines perform the operations, 

on the side of 

and accuracy 

it is evident 

that  the position of purely numerical theories is very satisfac- 

to ry .  However, the way to  solve equations (19') and ( 4 6 ' )  by 

an asaLytical method is not closed either. We can follow the 

way suggested by Poincare (\093 and represent the frequencies . 
--b 

gl, gar g3 @;4 and W and V as power series Then 

we develop the operator 

I 

into a m e r  series 

. are alsooperators. 

in The coefficients ia t h i s  series 

snd' (46 ' ) into equations integrable by' quadratures. 

I 
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Constants of Intewation 

De- * integration constants in this theory is simpler 

than in the aumor's pre~ious. theory  ( w,~?).  

IXI the lunar case, the series for  A88, A,, A%& axe 

the cosine series and, consequently, they contain the additive 

constant of integration, 

are the sine series and they do not contain any such constants. 

The series f o r  A,,, A,, , A,, 

The same conclusions 

We conclude that the 

in Y is  

are valid also for axt i f ic ia l  satellites, 

form of the additive constant of integration 

in T'% it i s  

and in y 3  it is 

, 

I 

W e  shall determine c2 and c3 in such a way that cos i o  sin v2 

I '  

' .  
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will be the only term in vL w h i c h  is of the zero order and 

p3 . s;hi0 54% v;, 

The series for 

w i l l  be the on3y term of zero order in 

P, , will be the cosine series in vl, v2, v3, v4 

w i l l  be t h e  sine series in these axguments. and b*  % 
We conclu&, that the term in 

independent from vl, v2, v3, v4 must contain sin w2 as a factor. 

I n a s i m i b r w a y , t h e t e m u s i n  

&.-in 

i' 

which axe independent f r o m  vy,. v2, v3, v4 crust have cos w2 as a 

fictor.  I n  order t o  
+' 
P we nust remove 

from the derivatives 

sin w2 in 

avoid the secular terms in the c o ~ ~ n e n % s  02 

the terms containing the argument w2 alone 

of . ht \(be the coefficient of 
* 

6 

I 

! 

t 

, 

I 

, 



. & be the coefficient of cos wz in 

and &, be the coefficient of COS w2 in 

I 

(50 1 i 

i 
(51) 

! 

! 

and because is of the order of perturbation, K, is of 'a 
! 

I 
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higher order relative t o  KA anii K3 . 
We determine 1-g and ~3 fYom equation (50) and (51). 

L 

Equation (52) serves as check. 

Tf i e  constants c:, c& & in (50)-(52) can be taken from the 

previous a p p r e t i o n .  It renains for us to discuss t h e  deter- 

va3.xes obtained by the  formal process of integration, without 

adding the constants. Then: 

ob-& for w2 - 0. 

. ..._ I . - .- . . . . 
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--4 
is  a unit vector and it nust be: 

I 
From this last equation l+cl  i s  obtained without amy ambiguity. 

constants in the given theory i s  simpler and e a s i e w  . .  Det€cmuug 

than i n  the theory based on use of a,, AA, A=, A+ . 
Equations (U) can be written in the standard form 

where ir; our case 

I 



obtained by f o d  integration, tihen 

a l  I 
wh.&re and <, are the constants of integration. 

We have 

m -  
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Born (53) we obtain: 

where - - ... can be taken from the previous approldmation. 
- a  - *  
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44 
we determine so in s u b  a way that -1 ctoes not con- 

a constant term. Then - 
R4 

.-. U 
Co is of the higher order compased t o  - - From (12) 

we obtain 

- 
-_ and \RI in the last eqpation can be ta3sen from the 

(57) 

(1 
previous appraximation. We choose <\ 

of the form A cos v1 is present excepting the term 

in such a way that no term 

Qo TOSV, . 

1 



Determination of Time 

We introduce the "disturbed" time $, by means of the equation 

Introducing the eccentric anomaly & by means of' the equation 

where 

we can write (58) as a Kepler's equation of the form 

Making use of (53") we obtain I 
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Conclusion 

The lunaz theory presented here is a numerical one, based on 

the application of the process of iteration. The experi?nenting w i t h  

Haasen's fl.lnrrr theory done a t  Goddard Space Flight Center by 

M. Charnar and by the author confirms the possibfllty of using the 

process of i terat ion t o  solve the problem. 

for the sa te l l i t es  of outer pLanets w i l l b e  rather snail, because 

The nuniber of cycles 

the final format of the computation accuracy for  such sa te l l i t es  

does not exceed in 1 + u and O.OOlo i n  the angles. 

The decision concerning the choice of terms ~ the development 

is l e f t  t o  the machine and thus there is no danger that by accident 

so= influential  terms w i l l  be omitted. 

is s e  or moderate. 

value of the parallactic factor and upon the presence of the resonance 

effects. 

We assume that the eccentricity 

Then validity of the theory depends upon the 

1 

i 

1 

I' 

i 
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